IRP=32 Modified Stone's first 3-phase method

IRP = 32 Modified version of Stone’s first three-phase method (Stone, 1970).

krg=[Sg    Sgr1    Sar]n{k_{rg\,}}\quad = \quad {\left[ {\frac{{{S_{g\,}}\; - \;\,{S_{gr}}}}{{1\; - \;{S_{ar}}}}} \right]^n}

krl=[Sl    Slr1    Slr]n{k_{rl}}\quad = \quad {\left[ {\frac{{{S_l}\; - \;{S_{lr}}}}{{1\; - \;{S_{lr}}}}} \right]^n}

krn=[1    Sg    Sl    Snr1    Sg    Slr    Snr]  [1    Slr    Snr1    Sl    Snr]  [(1    Sg    Slr    Snr)  (1    Sl)(1    Snr)]n{k_{rn}}\quad = \quad \left[ {\frac{{1\; - \;{S_g}\; - \;{S_l}\; - \;{S_{nr}}}}{{1\; - \;{S_g}\; - \;{S_{lr}}\; - \;{S_{nr}}}}} \right]\;\left[ {\frac{{1\; - \;{S_{lr}}\; - \;{S_{nr}}}}{{1\; - \;{S_l}\; - \;{S_{nr}}}}} \right]\;{\left[ {\frac{{\left( {1\; - \;{S_g}\; - \;{S_{lr}}\; - \;{S_{nr}}} \right)\;\left( {1\; - \;{S_l}} \right)}}{{\left( {1\; - \;{S_{nr}}} \right)}}} \right]^n}

When SnS_n = 1 - SlS_l - SgS_g - SsS_s is near irreducible liquid saturation,

SnrS_{nr}SnS_nSnrS_{nr} + .005, liquid relative permeability is taken to be

krn=krn    Sn    Snr.005{k'_{rn}}\quad = \quad {k_{rn}}\; \cdot \;\frac{{{S_n}\; - \;{S_{nr}}}}{{.005}}

Parameters are SlrS_{lr} = RP(1), SnrS_{nr} = RP(2), SgrS_{gr} = RP(3), n = RP(4).

Last updated