ICP=10 Modified Brooks-Corey Model

A modified version of the Brooks-Corey model (Brooks and Corey, 1964) has been implemented. In order to prevent the capillary pressure from decreasing towards negative infinity as the effective saturation approaches zero, a linear function is used for saturations SlS_l below a certain value Slrc+εS_{lrc}+\varepsilon, where ε\varepsilon is a small number. The slope of the linear extrapolation is identical with the slope of the capillary pressure curve at Sl=Slrc+εS_l=S_{lrc}+\varepsilon. Alternatively, the capillary pressure is prevented from becoming more negative than pc,max-p_{c,max}. The modified Brooks-Corey model is invoked by setting both IRP and ICP to 10.

pc={pe(Sec)1/λ                                                                           for  Sl>(Slrc+ε)pe(ε1Slrc)1/λ+peλ11Slrc(ε1Slrc)1+λλ(SlSlrcε)    for  Sl<(Slrc+ε)p_c=\left\{\begin{matrix}-p_e\left(S_{ec}\right)^{-1/\lambda}\mathrm{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ for\ }\ S_l>(S_{lrc}+\varepsilon)\\-p_e\left(\frac{\varepsilon}{1-S_{lrc}}\right)^{-1/\lambda}+\frac{p_e}{\lambda}\frac{1}{1-S_{lrc}}\left(\frac{\varepsilon}{1-S_{lrc}}\right)^{-\frac{1+\lambda}{\lambda}}\left(S_l-S_{lrc}-\varepsilon\right)\mathrm{\ \ \ \ for\ }\ S_l<(S_{lrc}+\varepsilon)\\\end{matrix}\right.

pcpc,maxp_c\geq-p_{c,max}

where

Sec=SlSlrc1SlrcS_{ec}=\frac{S_l-S_{lrc}}{1-S_{lrc}}

Parameters:

CP(1): λ (pore size distribution index)

CP(2): Pe (gas entry pressure [Pa])

if CP(2) is negative and USERX(1,N) is non-zero, apply Leverett’s rule:

Pe=CP(2)USERX(1,N)/PER(NMAT)P_e=-\mathrm{\mathrm{CP}}(2)\sqrt{\mathrm{USERX}(\mathrm{1,N})\mathrm{/PER}(\mathrm{NMAT})}

if USERX(2,N) is positive, Pe = USERX(2,N)

if USERX(2,N) is negative, Pe = -USERX(2,N)CP(2)

CP(3): ε or Pc,max

if CP(3) = 0, pc,max=1050{p}_{c,max}=10^{50}, ε=1\varepsilon=-1

if 0 < CP(3) < 1, use linear model for Sl<Slrc+εS_l<S_{lrc}+\varepsilon

if CP(3) 1\geq 1 , pc,maxp_{c,max}= CP(3), ε=1\varepsilon=-1

CP(6): SlrcS_{lrc}