Linear function
Pcap={− CP(1)for Sl≤ CP (2)0for Sl≥CP (3)− CP(1)CP (3)−SlCP(3)−CP (2)for CP(2)<Sl< CP (3)P_{cap}\quad=\quad\left\{\begin{matrix}-\thickspace\mathrm{CP}\left(1\right)&\mathrm{for}\thickspace S_l\le\thickspace\mathrm{CP}\ \left(2\right)\\0&\mathrm{for}\thickspace S_l\geq\mathrm{CP}\ \left(3\right)\\-\thickspace\mathrm{CP}\left(1\right)\frac{\mathrm{CP}\ \left(3\right)-S_l}{\mathrm{CP}\left(3\right)-\mathrm{CP}\ \left(2\right)}&\mathrm{for\ }\thickspace\mathrm{CP}\left(2\right)<S_l<\mathrm{\ CP}\ \left(3\right)\\\end{matrix}\right.Pcap=⎩⎨⎧−CP(1)0−CP(1)CP(3)−CP (2)CP (3)−SlforSl≤CP (2)forSl≥CP (3)for CP(2)<Sl< CP (3)
Restriction: CP(3) > CP(2).
If CP(4) ≠ 0,
Pcgn=Pcap(=Pcgl)P_{cgn}=P_{cap}(=P_{cgl})Pcgn=Pcap(=Pcgl)
Pcap(Pcgl)=0P_{cap}(P_{cgl})=0Pcap(Pcgl)=0