TOUGH4 User Manual
  • Quick Entry to Keywords for Data Input
  • 1️⃣INTRODUCTION
    • About TOUGH
    • TOUGH Development History
    • TOUGH4 Implementation
    • Scope and Methodology
  • 2️⃣WHAT IS NEW IN TOUGH4
  • 3️⃣CODE COMPILATION AND INSTALLATION
    • Setup for Compilation
    • Code Compilation
      • 1. Compilation of TOUGH4 using Visual Studio
      • 2. Compilation of TOUGH4 on Linux-like platform
    • Installation
    • Running the Executable for Simulations
  • 4️⃣GOVERNING EQUATIONS
    • Mass-Balance Equation
    • Accumulation Terms
    • Flux Terms
    • Sink and Source Terms
    • Virtual Node Well Treatment
    • Semi-Analytical Conductive Heat Exchange
    • Drift Model
    • Non-Darcy Flow
  • 5️⃣NUMERICAL METHOD
    • Space and Time Discretization
    • Interface Weighting Schemes
    • Initial and Boundary Conditions
      • Initial Conditions and Restarting
      • Neumann Boundary Conditions
      • Dirichlet Boundary Conditions
      • Atmospheric Boundary Conditions
      • Constant Temperature Boundary Conditions
    • Parallel computing schemes
    • Linear Solvers
    • Python Functions
      • Relative Permeability
      • Capillary Pressure
      • Initial Condition Calculation
      • Fetching Output Data
      • Fetching Thermophysical Property Data From NIST Webbook
      • Coupling With Third-Party Software
  • 6️⃣SOFTWARE ARCHITECTURE
    • Program Design
    • Data Structure
    • Linear Equation Setup
  • 7️⃣PROCESS MODELING
    • EOS1
    • EOS2
    • EOS3
    • EOS4
    • EOS6
    • EOS7
    • EOS9
    • ECO2
    • EWASG
    • TMVOC
    • Tracers/Decay Chain
    • Biodegradation Reaction
    • Wellbore Flow
    • Non-Darcy Flow
    • Enhanced Coal Bed Methane
  • 8️⃣PREPARATION OF MODEL INPUT
    • Input Formatting
    • Keywords and Input Data
      • TITLE
      • BIODG
      • CBMDA
      • CHEMP
      • COFT
      • CONNE
      • COUPL
      • DIFFU
      • ELEME
      • ENDCY
      • ENDFI
      • FLAC
      • FNIST
      • FOFT
      • FORCH
      • GASES
      • GENER
      • GOFT
      • HYSTE
      • INCON
      • INDOM
      • MESHM
      • MODDE
      • MOMOP
      • MULTI
      • OUTPU
      • PARAM
      • ROCKS
      • ROFT
      • RPCAP
      • SELEC
      • SOLVR
      • SPAVA
      • TIMBC
      • TIMES
      • TRACR
      • WELLB
    • Inputs for Initial Conditions
      • EOS1
      • EOS2
      • EOS3
      • EOS4
      • EOS6
      • EOS7
      • EOS9
      • ECO2
      • EWASG
      • TMVOC
    • Geometry Data
      • General Concepts
      • MESHMaker
      • Multiple-continuum processing
    • Inputs for MESHMaker
      • Generation of radially symmetric grids
        • RADII
        • EQUID
        • LOGAR
        • LAYER
      • Generation of rectilinear grids
      • MINC processing for fractured media
    • Adjustment of Computing Parameters at Run-time
  • 9️⃣OUTPUTS
  • 🔟VALIDATION AND APPLICATION EXAMPLES
    • EOS1
      • Problem 1 - Code Demonstration
      • Problem 2 - Heat Sweep in a Vertical Fracture (rvf)
      • Problem 3 - Five-spot Geothermal Production/Injection (rfp)
      • Problem 4 - Coupled Wellbore Flow (r1q)
      • Problem 5 - Five-Spot Geothermal Production/Injection under extremely high temperature
    • EOS2
      • Problem 1 -Five-spot Geothermal Production/Injection (rfp)
    • EOS3
      • Problem 1 - Code Demonstration (eos3p1)
      • Problem 2 - 1D TH Problem with Heating and Gas Source (by Guanlong Guo)
      • Problem 3 - Heat Pipe in Cylindrical Geometry (rhp)
      • Problem 4 - 3D Thermal Consolidation Test, Coupling with FLAC3D Simulator (by Guanlong Guo)
    • EOS4
      • Problem 1 - Code Demonstration (eos4p1)
      • Problem 2 - Heat Pipe in Cylindrical Geometry (rhp)
    • EOS6
      • Problem 1-Validation with EOS2
      • Problem 2-Noble Gas Transport
    • EOS7
      • Problem 1-Multiphase and Nonisothermal Processes in a System with Variable Salinity (rf1)
      • Problem 2-Thermal and Tracer Diffusion (EOS7R/rdif7)
      • Problem 3-Contamination of an Aquifer from VOC Vapors in the Vadose Zone (EOS7R/rdica)
      • Problem 4-Density, Viscosity, Solubility, and Enthalpy of Real Gas Mixtures (EOS7C/SAM7C1)
      • Problem 5-CO2 Injection into a Depleted Gas Reservoir (EOS7C2/SAM7C2)
      • Problem 6- CO2 Injection into a Saturated System (EOS7C/SAM7C3)
      • Problem 7-Density, Viscosity, and Enthalpy of Real Gas Mixtures (EOS7CA/SAM7CA1)
      • Problem 8-CO2 Injection into a Shallow Vadose Zone (EOS7CA/SAM7CA2)
      • Problem 9-Non-Isothermal Compressed Air Energy Storage in Reservoir (by Julien Mouli-Castillo)
    • EOS9
      • Page 1
    • ECO2
      • Problem 1-Demonstration of Initialization Options (ECO2N/rtab)
      • Problem 2-Radial Flow from a CO2 Injection Well (ECO2N/rcc3)
      • Problem 3-CO2 Discharge Along a Fault Zone (ECO2N/r1dv)
      • Problem 4-CO2 Injection into a 2-D Layered Brine Formation (ECO2N/rtp7)
      • Problem 5-Upflow of CO2 along a Deep Fault Zone (ECO2M/r1d)
      • Problem 6-Migration of a CO2 Plume in a Sloping Aquifer, Intersected by a Fault (ECO2M/rwaf)
      • Problem 7-GCS/GHE with a double-porosity reservoir (Case6_50kg_DP/ECO2NV2)
    • EWASG
      • Problem 1 - Brine Density Calculation (dnh)
      • Problem 2 - Production from a Geothermal Reservoir with Hypersaline Brine and CO2 (rhbc)
    • TMVOC
      • Problem 1-Initialization of Different Phase Conditions (r7c)
      • Problem 2-1-D Buckley-Leverett Flow (rblm)
      • Problem 3-Diffusion of components (rdif2)
      • Problem 4-Steam Displacement of a NAPL in a Laboratory Column (rtcem)
      • Problem 5-Steam Displacement of a Benzene-Toluene Mixture in a Laboratory Column (rbt)
      • Problem 6 -Air Displacement of a NAPL from a Laboratory Column (rad)
      • Problem 7-NAPL Spill in the Unsaturated Zone (r2dl)
    • T4.Well
      • Problem 1-Steady-state two-phase flow upward
      • Problem 2-Non-isothermal CO2 flow through a wellbore initially full of water
  • CONCLUSION REMARKS
  • REFERENCES
  • ACKNOWLEDGEMENT
  • Appendix
    • ☑️A: RELATIVE PERMEABILITY FUNCTIONS
      • IRP=1 Linear function
      • IRP=2 Power function
      • IRP=3 Corey's curves
      • IRP=4 Grant's curve
      • IRP=5 Perfectly mobile
      • IRP=6 Fatt and Klikoff function
      • IRP=7 van Genuchten-Mualem Model
      • IRP=8 Verma function
      • IRP=10 Modified Brooks-Corey Model
      • IRP=11 Modified van Genuchten Model
      • IRP=12 Regular hysteresis
      • IRP=13 Simple hysteresis
      • IRP=31 Three phase perfectly mobile
      • IRP=32 Modified Stone's first 3-phase method
      • IRP=33 Three-phase Parker's function
      • IRP=34 Alternative Stone 3-phase
      • IRP=35 Power-law function
      • IRP=36 Faust for two-phase Buckley-Leverett problem
      • IRP=37 Another alternative to Stone function
      • IRP=40 Table lookup
      • IRP=41 User-Defined relative permeability function
    • ☑️B: CAPILLARY PRESSURE FUNCTIONS
      • ICP=1 Linear function
      • ICP=2 Function of Pickens
      • ICP=3 TRUST capillary pressure
      • ICP=4 Milly’s function
      • ICP=6 Leverett’s function
      • ICP=7 van Genuchten function
      • ICP=8 No capillary pressure
      • ICP=10 Modified Brooks-Corey Model
      • ICP=11 Modified van Genuchten Model
      • ICP=12 Regular hysteresis
      • ICP=13 Simple hysteresis
      • ICP=31 Parker et al 3-phase function
      • ICP=32 Parker 3-phase function, alternative 1
      • ICP=33 Parker 3-phase function, alternative 2
      • ICP=34 Parker 3-phase function, alternative 3
      • ICP=40 Table lookup
      • ICP=41 User-Defined capillary pressure function
    • ☑️C: ADDITIONAL PROGRAM OPTIONS
    • ☑️D: DESCRIPTION OF FRACTURED FLOW
      • Multiple Continuum Approaches
      • Active Fracture Modle
Powered by GitBook
On this page
  1. NUMERICAL METHOD
  2. Python Functions

Initial Condition Calculation

A Python function named "iniCondition" is provided. This function will receive primary variables, x, y, z coordinates, material number and phase state index for all elements from TOUGH4. Users can manipulate the primary variables for initial conditions, such as setting initial condition for pressure and temperature according to element's z coordinate, gravity equilibrium and temperature gradient, setting initial condition for fluid saturations or mass fractions based on the rock number or coordinates, or any other assignment to the primary variables. The updated primary variables will be sent back to TOUGH4. TOUGH4 will write the updated primary variables to a SAVE file which can be used as initial condition for further simulation. User may also change the phase state index which will also be sent back TOUGH4.

User may use this function to generate a INCON file by running a simulation for a single time step with tiny time-step size (e.g. 1.0e-6 second).

Here is a template for the iniCondition function that you can modify to suit your specific initial condition requirements:

def iniCondition(double_array, int_array):
# start getting data section, user does not need change to this section
    nPrv=int_array[4]          #this is the number of primary variables
    numElem=int_array[6]       #number of elements
    HEAT=int_array[7]-1        # the index of temperature in the PV list
    xk= np.zeros((numElem, nPrv), dtype='float64')    # original primary variables 
    xx= np.zeros(numElem*(nPrv+1), dtype='float64')   # final primary variables
    x= np.zeros(numElem, dtype='float64')             # x coordinates   
    y= np.zeros(numElem, dtype='float64')             # y coordinates
    z= np.zeros(numElem, dtype='float64')             # z coordinates
    nMat=np.zeros(numElem, dtype=int)                 # rock index of the elements       
    stateIdx=np.zeros(numElem, dtype=int)             # phase state index 
    for i in range(0,nPrv):
       nE=i*numElem
       for j in range(0,numElem): 
          xk[j,i]=double_array[nE+j]       # get original initial-condition PV variables.
    nE=nPrv*numElem      
    for i in range(0,numElem):
          x[i]= double_array[nE+i]         # get x coordinates
    nE=nE+numElem      
    for i in range(0,numElem):
          y[i]= double_array[nE+i]         # get y coordinates
    nE=nE+numElem      
    for i in range(0,numElem):
          z[i]= double_array[nE+i]         # get z coordinates
    for i in range(0,numElem):
       nMat[i]= int_array[i+10]              # get rock of the elements.
    for i in range(0,numElem):
       stateIdx[i]= int_array[i+10+numElem]  # get initial phase state index
# end getting data section
# users need to define the reference temperature and pressure:
    refZ=0                    
    refT=35.0
    refP=5.0e6
    density=1000.0
    g=9.81
    T_gradient=35.0   # temperature gradient 35C/km           
# perform calculation of xk (PV for initial condition) at following lines: 
# for example, pressure: if gravity equilibrium, xk=P_ref+density*g*h      
#           temperature: geothermal temperature graditent is known: xk(HEAT)=T_ref-h*T_gradient
# User can assign the the primary variables based on knowns: such as: x, y, z, nMat
    for i in range(0,numElem):
       xk[i,0]=refP+(z[i]-refZ)*density*g
#       xk[i,1]=0.000
#       xk[i,2]=0.000
       xk[i,HEAT]=refT+(z[i]-refZ)/1000.0*T_gradient
#       stateIdx[i]=2                      #Users can also change the phase state if necessary
  
#start assembling data section, user does not need change to this section 
    for i in range(0,nPrv):
       nE=i*numElem
       for j in range(0,numElem): 
          xx[nE+j] =xk[j,i]   
    nE=	nPrv*numElem  
    for j in range(0,numElem):
       xx[nE+j] = stateIdx[j]
# assembling data section
    return xx 

In this template, the iniCondition function takes lists of coordinates, material numbers, and phase states for each element. You can customize the calculations for pressure, temperature, saturation, and mass fractions based on the provided parameters to create initial conditions suited for your simulation.

PreviousCapillary PressureNextFetching Output Data

Last updated 1 day ago

5️⃣