ICP=11 Modified van Genuchten Model
The van Genuchten model (Luckner et al., 1989) has been modified to prevent the capillary pressure from decreasing towards negative infinity as the effective saturation approaches zero. The approach is identical to that in ICP=10, except that two extensions (linear and log-linear) are available. The modified van Genuchten model is invoked by setting both IRP and ICP to 11.
pc=−α1[(Sec)(γ−1)/m−1]1/n for Sl≥(Slrc+ε)
pc=−α1[Sec∗(γ−1)/m−1]1/n−β⋅(Sl−Slrc−ε) for Sl<(Slrc+ε)
with
linear extension: β=−αnm(1−γ)⋅(1−Slrc)1⋅(Sec∗(γ−1)/m−1)n1−1Sec∗⋅(mγ−1−m)
pc=−α1[Sec∗(γ−1)/m−1]1/n⋅10β⋅(Sl−Slrc−ε) for Sl<(Slrc+ε)
with
log-linear extension: β=−log10(e)⋅(m1−m⋅εγ−1⋅Sec∗(1−γ)/m−11)
pc≥−pc,max
where
Sec=1−SlrcSl−Slrc, Sec∗=1−Slrcε
Parameters:
CP(1): n (parameter related to pore size distribution index,see also CP(4))
CP(2): 1/1αα (parameter related to gas entry pressure [Pa])
USERX(4,N)>0: 1/αi= USERX(4,N)
USERX(4,N)<0: 1/αi= USERX(4,N)·CP(2)
if CP(2) is negative, apply Leverett scaling rule:
1/αi=1/αref⋅ki/kref
where:
1/αref=|CP(2)|
kref= PER(NMAT)
USERX(1,N)>0: ki= USERX(1,N)
USERX(1,N)<0: ki= USERX(1,N)·PER(NMAT)
CP(3): ε or Pc,max
if CP(3) = 0, Pc,max= 1050, ε=−1
if 0 < CP(3) < 1, =CP(3) and use linear extension
if CP(3) => 1, Pc,max=CP(3), ε=−1
if –1< CP(3) <0, ε =|CP(3)| and use log-linear extension
CP(4): m
if zero then m=1-1/CP(1), else m=CP(4) and n=1/(1-m)
CP(5): Tref
if negative, |CP(5)| is reference temperature to account for temperature dependence of capillary pressure due to changes in surface tension
CP(6): γ parameter of Active Fracture Model (see Appendix C)
CP(7): Slrc
if zero, then Slrc=RP(1)=Slrk