TOUGH4 User Manual
  • Quick Entry to Keywords for Data Input
  • 1️⃣INTRODUCTION
    • About TOUGH
    • TOUGH Development History
    • TOUGH4 Implementation
    • Scope and Methodology
  • 2️⃣WHAT IS NEW IN TOUGH4
  • 3️⃣CODE COMPILATION AND INSTALLATION
    • Setup for Compilation
    • Code Compilation
      • 1. Compilation of TOUGH4 using Visual Studio
      • 2. Compilation of TOUGH4 on Linux-like platform
    • Installation
    • Running the Executable for Simulations
  • 4️⃣GOVERNING EQUATIONS
    • Mass-Balance Equation
    • Accumulation Terms
    • Flux Terms
    • Sink and Source Terms
    • Virtual Node Well Treatment
    • Semi-Analytical Conductive Heat Exchange
    • Drift Model
    • Non-Darcy Flow
  • 5️⃣NUMERICAL METHOD
    • Space and Time Discretization
    • Interface Weighting Schemes
    • Initial and Boundary Conditions
      • Initial Conditions and Restarting
      • Neumann Boundary Conditions
      • Dirichlet Boundary Conditions
      • Atmospheric Boundary Conditions
      • Constant Temperature Boundary Conditions
    • Parallel computing schemes
    • Linear Solvers
    • Python Functions
      • Relative Permeability
      • Capillary Pressure
      • Initial Condition Calculation
      • Fetching Output Data
      • Fetching Thermophysical Property Data From NIST Webbook
      • Coupling With Third-Party Software
  • 6️⃣SOFTWARE ARCHITECTURE
    • Program Design
    • Data Structure
    • Linear Equation Setup
  • 7️⃣PROCESS MODELING
    • EOS1
    • EOS2
    • EOS3
    • EOS4
    • EOS6
    • EOS7
    • EOS9
    • ECO2
    • EWASG
    • TMVOC
    • Tracers/Decay Chain
    • Biodegradation Reaction
    • Wellbore Flow
    • Non-Darcy Flow
    • Enhanced Coal Bed Methane
  • 8️⃣PREPARATION OF MODEL INPUT
    • Input Formatting
    • Keywords and Input Data
      • TITLE
      • BIODG
      • CBMDA
      • CHEMP
      • COFT
      • CONNE
      • COUPL
      • DIFFU
      • ELEME
      • ENDCY
      • ENDFI
      • FLAC
      • FNIST
      • FOFT
      • FORCH
      • GASES
      • GENER
      • GOFT
      • HYSTE
      • INCON
      • INDOM
      • MESHM
      • MODDE
      • MOMOP
      • MULTI
      • OUTPU
      • PARAM
      • ROCKS
      • ROFT
      • RPCAP
      • SELEC
      • SOLVR
      • SPAVA
      • TIMBC
      • TIMES
      • TRACR
      • WELLB
    • Inputs for Initial Conditions
      • EOS1
      • EOS2
      • EOS3
      • EOS4
      • EOS6
      • EOS7
      • EOS9
      • ECO2
      • EWASG
      • TMVOC
    • Geometry Data
      • General Concepts
      • MESHMaker
      • Multiple-continuum processing
    • Inputs for MESHMaker
      • Generation of radially symmetric grids
        • RADII
        • EQUID
        • LOGAR
        • LAYER
      • Generation of rectilinear grids
      • MINC processing for fractured media
    • Adjustment of Computing Parameters at Run-time
  • 9️⃣OUTPUTS
  • 🔟VALIDATION AND APPLICATION EXAMPLES
    • EOS1
      • Problem 1 - Code Demonstration
      • Problem 2 - Heat Sweep in a Vertical Fracture (rvf)
      • Problem 3 - Five-spot Geothermal Production/Injection (rfp)
      • Problem 4 - Coupled Wellbore Flow (r1q)
      • Problem 5 - Five-Spot Geothermal Production/Injection under extremely high temperature
    • EOS2
      • Problem 1 -Five-spot Geothermal Production/Injection (rfp)
    • EOS3
      • Problem 1 - Code Demonstration (eos3p1)
      • Problem 2 - 1D TH Problem with Heating and Gas Source (by Guanlong Guo)
      • Problem 3 - Heat Pipe in Cylindrical Geometry (rhp)
      • Problem 4 - 3D Thermal Consolidation Test, Coupling with FLAC3D Simulator (by Guanlong Guo)
    • EOS4
      • Problem 1 - Code Demonstration (eos4p1)
      • Problem 2 - Heat Pipe in Cylindrical Geometry (rhp)
    • EOS6
      • Problem 1-Validation with EOS2
      • Problem 2-Noble Gas Transport
    • EOS7
      • Problem 1-Multiphase and Nonisothermal Processes in a System with Variable Salinity (rf1)
      • Problem 2-Thermal and Tracer Diffusion (EOS7R/rdif7)
      • Problem 3-Contamination of an Aquifer from VOC Vapors in the Vadose Zone (EOS7R/rdica)
      • Problem 4-Density, Viscosity, Solubility, and Enthalpy of Real Gas Mixtures (EOS7C/SAM7C1)
      • Problem 5-CO2 Injection into a Depleted Gas Reservoir (EOS7C2/SAM7C2)
      • Problem 6- CO2 Injection into a Saturated System (EOS7C/SAM7C3)
      • Problem 7-Density, Viscosity, and Enthalpy of Real Gas Mixtures (EOS7CA/SAM7CA1)
      • Problem 8-CO2 Injection into a Shallow Vadose Zone (EOS7CA/SAM7CA2)
      • Problem 9-Non-Isothermal Compressed Air Energy Storage in Reservoir (by Julien Mouli-Castillo)
    • EOS9
      • Page 1
    • ECO2
      • Problem 1-Demonstration of Initialization Options (ECO2N/rtab)
      • Problem 2-Radial Flow from a CO2 Injection Well (ECO2N/rcc3)
      • Problem 3-CO2 Discharge Along a Fault Zone (ECO2N/r1dv)
      • Problem 4-CO2 Injection into a 2-D Layered Brine Formation (ECO2N/rtp7)
      • Problem 5-Upflow of CO2 along a Deep Fault Zone (ECO2M/r1d)
      • Problem 6-Migration of a CO2 Plume in a Sloping Aquifer, Intersected by a Fault (ECO2M/rwaf)
      • Problem 7-GCS/GHE with a double-porosity reservoir (Case6_50kg_DP/ECO2NV2)
    • EWASG
      • Problem 1 - Brine Density Calculation (dnh)
      • Problem 2 - Production from a Geothermal Reservoir with Hypersaline Brine and CO2 (rhbc)
    • TMVOC
      • Problem 1-Initialization of Different Phase Conditions (r7c)
      • Problem 2-1-D Buckley-Leverett Flow (rblm)
      • Problem 3-Diffusion of components (rdif2)
      • Problem 4-Steam Displacement of a NAPL in a Laboratory Column (rtcem)
      • Problem 5-Steam Displacement of a Benzene-Toluene Mixture in a Laboratory Column (rbt)
      • Problem 6 -Air Displacement of a NAPL from a Laboratory Column (rad)
      • Problem 7-NAPL Spill in the Unsaturated Zone (r2dl)
    • T4.Well
      • Problem 1-Steady-state two-phase flow upward
      • Problem 2-Non-isothermal CO2 flow through a wellbore initially full of water
  • CONCLUSION REMARKS
  • REFERENCES
  • ACKNOWLEDGEMENT
  • Appendix
    • ☑️A: RELATIVE PERMEABILITY FUNCTIONS
      • IRP=1 Linear function
      • IRP=2 Power function
      • IRP=3 Corey's curves
      • IRP=4 Grant's curve
      • IRP=5 Perfectly mobile
      • IRP=6 Fatt and Klikoff function
      • IRP=7 van Genuchten-Mualem Model
      • IRP=8 Verma function
      • IRP=10 Modified Brooks-Corey Model
      • IRP=11 Modified van Genuchten Model
      • IRP=12 Regular hysteresis
      • IRP=13 Simple hysteresis
      • IRP=31 Three phase perfectly mobile
      • IRP=32 Modified Stone's first 3-phase method
      • IRP=33 Three-phase Parker's function
      • IRP=34 Alternative Stone 3-phase
      • IRP=35 Power-law function
      • IRP=36 Faust for two-phase Buckley-Leverett problem
      • IRP=37 Another alternative to Stone function
      • IRP=40 Table lookup
      • IRP=41 User-Defined relative permeability function
    • ☑️B: CAPILLARY PRESSURE FUNCTIONS
      • ICP=1 Linear function
      • ICP=2 Function of Pickens
      • ICP=3 TRUST capillary pressure
      • ICP=4 Milly’s function
      • ICP=6 Leverett’s function
      • ICP=7 van Genuchten function
      • ICP=8 No capillary pressure
      • ICP=10 Modified Brooks-Corey Model
      • ICP=11 Modified van Genuchten Model
      • ICP=12 Regular hysteresis
      • ICP=13 Simple hysteresis
      • ICP=31 Parker et al 3-phase function
      • ICP=32 Parker 3-phase function, alternative 1
      • ICP=33 Parker 3-phase function, alternative 2
      • ICP=34 Parker 3-phase function, alternative 3
      • ICP=40 Table lookup
      • ICP=41 User-Defined capillary pressure function
    • ☑️C: ADDITIONAL PROGRAM OPTIONS
    • ☑️D: DESCRIPTION OF FRACTURED FLOW
      • Multiple Continuum Approaches
      • Active Fracture Modle
Powered by GitBook
On this page
  1. PREPARATION OF MODEL INPUT
  2. Keywords and Input Data

OUTPU

OUTPU permits the users to obtain printout of specified variables (optional). OUTPU specifications will supersede the default condition specified in KDATA in data block PARAM.

Record OUTPU.0 (optional)

Free format for 1 string parameter, or Format(A20)

COUTFM

COUTFM a keyword indicating the desired output format, currently either CSV, TECPLOT, or PETRASIM

Record OUTPU.1

Free format for 1 parameter, or Format(I5)

MAXOUTVAR

MOUTVAR number of variables to be printed out.

Record OUTPU.2, OUTPU.3, …, OUTPU.(1+MOUTVAR)

Free format for 3 parameters, or Format(A20,2I5)

COUTLN, ID1, ID2

COUTLN name of variable, to be chosen among the available options. They include primary variables, secondary parameters, flow terms, and more. The name of variables is all capital letters and should be typed in the input file as shown in Table 18.

ID1 first option for the corresponding keyword in COUTLN, as shown in Table 18.

ID2 second option for the corresponding keyword in COUTLN, as shown in Table 18.

Table 18. Keywords of block OUTPU and related output variables

Keyword

ID1

ID2

Output Variable

SET

ISET

-

Prints predefined sets of output variables.

ISET = 1: Set of main element-related output variables

ISET = 2: Set of main connection-related output variables

ISET = 3: Set of main generation-related output variables

NO COMMA

-

-

Omit commas between values

NO QUOTES

-

-

Omit quotes around values

NO NAME

-

-

Omit element names

COORDINATE

COORD

NXYZ

-

Grid-block or connection coordinates;

mesh dimension and orientation are automatically determined, or can be specified through variable NXYZ:

NXYZ = 1 : Mesh is 1D “X ”

NXYZ = 2 : Mesh is 1D “ Y ”

NXYZ = 3 : Mesh is 1D “ Z”

NXYZ = 4 : Mesh is 2D “XY ”

NXYZ = 5 : Mesh is 2D “X Z”

NXYZ = 6 : Mesh is 2D “ YZ”

NXYZ = 7 : Mesh is 3D “XYZ”

INDEX

-

-

Index (running number) of elements, connections, or sinks/sources

MATERIAL

ROCK

ROCK TYPE

-

-

Material number

MATERIAL NAME

ROCK NAME

ROCK TYPE NAME

-

Material name

ABSOLUTE

ISOT

-

Absolute permeability in direction ISOT; if ISOT = 0, permeabilities related to all three directions are printed

POROSITY

-

-

Porosity

TEMPERATURE

-

-

Temperature

PRESSURE

IPH#

-

Pressure of phase IPH

SATURATION

IPH#

-

Saturation of phase IPH

RELATIVE

IPH#

-

Relative permeability of phase IPH

VISCOSITY

IPH#

-

Viscosity of phase IPH

DENSITY

IPH#

-

Density of phase IPH

ENTHALPY

IPH#

-

Enthalpy of phase IPH

CAPILLARY

IPH#

-

Capillary pressure;

if IPH = 1, difference between gas and aqueous phase pressures (for ECO2, difference between gaseous CO2 and aqueous phase pressures);

if IPH=2, difference between gas-NAPL phase pressures for TMVOC, and difference between gaseous and liquid CO2 phase pressures for ECO2

MASS FRACTION

IPH

IC

Mass fraction of component IC in phase IPH

DIFFUSION1

IPH#

-

Diffusion parameter group 1 ( ) of phase b = IPH

DIFFUSION2

IPH#

-

Diffusion parameter group 2 ( ) of phase b = IPH

PSAT

-

-

Saturated vapor pressure

BIOMASS

-

-

Biomass concentration

PRIMARY

IPV

-

Primary variable No. IPV; if IPV = 0, all NK+1 primary variables are printed; if IPV<0, 1 to -IPV primary variables are printed. Alternatively, if IE(59)>0, the corresponding primary variable changes (DX) will be printed.

PVCHANGE

IPV

Changes (DX) of primary variable No. IPV at current time step; if IPV = 0, changes of all NK+1 primary variables are printed; if IPV<0, 1 to -IPV changes of primary variables are printed.

RESIDUALS

IPV

Residuals of mass balance at current NR iteration; if IPV = 0, residuals of all NK+1 mass/energy components are printed; if IPV<0, residuals of 1 to -IPV mass components are printed.

SECONDARY

IPH#

ISP

Secondary parameter No. ISP related to phase IPH, where

ISP = 0 : All secondary parameters

ISP = 1 : Phase saturation

ISP = 2 : Relative permeability

ISP = 3 : Viscosity

ISP = 4 : Density

ISP = 5 : Enthalpy

ISP = 6 : Capillary pressure

ISP = 7 : Diffusion parameter group 1

ISP = 8 : Diffusion parameter group 2

TOTAL FLOW

TOTAL FLOW RATE

-

-

Total flow rate

FLOW

RATE

FLOW RATE

IPH

IC

Advective flow rate.

IPH=0; IC=0: Total flow

IPH>0; IC=0: Flow of phase IPH

IPH<0; IC=0: Flow of each phase

IPH>0; IC>0: Flow of component IC in phase IPV

IPH>0; IC<0: The flow of each component in phase IPH

DIFFUSIVE FLOW

IPH

IC

Diffusive flow rate.

IPH=0; IC=0: Total flow

IPH>0; IC=0: Flow of phase IPH

IPH<0; IC=0: Flow of each phase

IPH>0; IC>0: Flow of component IC in phase IPH

IPH>0; IC<0: The flow of each component in phase IPH

HEAT FLOW

-

-

Heat flow rate

VELOCITY

IPH#

-

Flow velocity of phase IPH

GENERATION

GENEARTION RATE

-

-

Production or injection rate

FLOWING ENTHALPY

-

-

Flowing enthalpy

FRACTIONAL FLOW

IPH#

-

Fractional flow of phase IPH (production only)

WELLBORE RESSURE

-

-

Wellbore pressure (wells on deliverability only)

# If IPH = 0, the output variables of all phases are printed.

Used in: All EOS modules

Example:

OUTPU

4

PRESSURE

TEMPERATURE

SATURATION, 2

MASS FRACTION, 1, 2

PreviousMULTINextPARAM

Last updated 7 months ago

8️⃣