TOUGH4 User Manual
  • Quick Entry to Keywords for Data Input
  • 1️⃣INTRODUCTION
    • About TOUGH
    • TOUGH Development History
    • TOUGH4 Implementation
    • Scope and Methodology
  • 2️⃣WHAT IS NEW IN TOUGH4
  • 3️⃣CODE COMPILATION AND INSTALLATION
    • Setup for Compilation
    • Code Compilation
      • 1. Compilation of TOUGH4 using Visual Studio
      • 2. Compilation of TOUGH4 on Linux-like platform
    • Installation
    • Running the Executable for Simulations
  • 4️⃣GOVERNING EQUATIONS
    • Mass-Balance Equation
    • Accumulation Terms
    • Flux Terms
    • Sink and Source Terms
    • Virtual Node Well Treatment
    • Semi-Analytical Conductive Heat Exchange
    • Drift Model
    • Non-Darcy Flow
  • 5️⃣NUMERICAL METHOD
    • Space and Time Discretization
    • Interface Weighting Schemes
    • Initial and Boundary Conditions
      • Initial Conditions and Restarting
      • Neumann Boundary Conditions
      • Dirichlet Boundary Conditions
      • Atmospheric Boundary Conditions
      • Constant Temperature Boundary Conditions
    • Parallel computing schemes
    • Linear Solvers
    • Python Functions
      • Relative Permeability
      • Capillary Pressure
      • Initial Condition Calculation
      • Fetching Output Data
      • Fetching Thermophysical Property Data From NIST Webbook
      • Coupling With Third-Party Software
  • 6️⃣SOFTWARE ARCHITECTURE
    • Program Design
    • Data Structure
    • Linear Equation Setup
  • 7️⃣PROCESS MODELING
    • EOS1
    • EOS2
    • EOS3
    • EOS4
    • EOS6
    • EOS7
    • EOS9
    • ECO2
    • EWASG
    • TMVOC
    • Tracers/Decay Chain
    • Biodegradation Reaction
    • Wellbore Flow
    • Non-Darcy Flow
    • Enhanced Coal Bed Methane
  • 8️⃣PREPARATION OF MODEL INPUT
    • Input Formatting
    • Keywords and Input Data
      • TITLE
      • BIODG
      • CBMDA
      • CHEMP
      • COFT
      • CONNE
      • COUPL
      • DIFFU
      • ELEME
      • ENDCY
      • ENDFI
      • FLAC
      • FNIST
      • FOFT
      • FORCH
      • GASES
      • GENER
      • GOFT
      • HYSTE
      • INCON
      • INDOM
      • MESHM
      • MODDE
      • MOMOP
      • MULTI
      • OUTPU
      • PARAM
      • ROCKS
      • ROFT
      • RPCAP
      • SELEC
      • SOLVR
      • SPAVA
      • TIMBC
      • TIMES
      • TRACR
      • WELLB
    • Inputs for Initial Conditions
      • EOS1
      • EOS2
      • EOS3
      • EOS4
      • EOS6
      • EOS7
      • EOS9
      • ECO2
      • EWASG
      • TMVOC
    • Geometry Data
      • General Concepts
      • MESHMaker
      • Multiple-continuum processing
    • Inputs for MESHMaker
      • Generation of radially symmetric grids
        • RADII
        • EQUID
        • LOGAR
        • LAYER
      • Generation of rectilinear grids
      • MINC processing for fractured media
    • Adjustment of Computing Parameters at Run-time
  • 9️⃣OUTPUTS
  • 🔟VALIDATION AND APPLICATION EXAMPLES
    • EOS1
      • Problem 1 - Code Demonstration
      • Problem 2 - Heat Sweep in a Vertical Fracture (rvf)
      • Problem 3 - Five-spot Geothermal Production/Injection (rfp)
      • Problem 4 - Coupled Wellbore Flow (r1q)
      • Problem 5 - Five-Spot Geothermal Production/Injection under extremely high temperature
    • EOS2
      • Problem 1 -Five-spot Geothermal Production/Injection (rfp)
    • EOS3
      • Problem 1 - Code Demonstration (eos3p1)
      • Problem 2 - 1D TH Problem with Heating and Gas Source (by Guanlong Guo)
      • Problem 3 - Heat Pipe in Cylindrical Geometry (rhp)
      • Problem 4 - 3D Thermal Consolidation Test, Coupling with FLAC3D Simulator (by Guanlong Guo)
    • EOS4
      • Problem 1 - Code Demonstration (eos4p1)
      • Problem 2 - Heat Pipe in Cylindrical Geometry (rhp)
    • EOS6
      • Problem 1-Validation with EOS2
      • Problem 2-Noble Gas Transport
    • EOS7
      • Problem 1-Multiphase and Nonisothermal Processes in a System with Variable Salinity (rf1)
      • Problem 2-Thermal and Tracer Diffusion (EOS7R/rdif7)
      • Problem 3-Contamination of an Aquifer from VOC Vapors in the Vadose Zone (EOS7R/rdica)
      • Problem 4-Density, Viscosity, Solubility, and Enthalpy of Real Gas Mixtures (EOS7C/SAM7C1)
      • Problem 5-CO2 Injection into a Depleted Gas Reservoir (EOS7C2/SAM7C2)
      • Problem 6- CO2 Injection into a Saturated System (EOS7C/SAM7C3)
      • Problem 7-Density, Viscosity, and Enthalpy of Real Gas Mixtures (EOS7CA/SAM7CA1)
      • Problem 8-CO2 Injection into a Shallow Vadose Zone (EOS7CA/SAM7CA2)
      • Problem 9-Non-Isothermal Compressed Air Energy Storage in Reservoir (by Julien Mouli-Castillo)
    • EOS9
      • Page 1
    • ECO2
      • Problem 1-Demonstration of Initialization Options (ECO2N/rtab)
      • Problem 2-Radial Flow from a CO2 Injection Well (ECO2N/rcc3)
      • Problem 3-CO2 Discharge Along a Fault Zone (ECO2N/r1dv)
      • Problem 4-CO2 Injection into a 2-D Layered Brine Formation (ECO2N/rtp7)
      • Problem 5-Upflow of CO2 along a Deep Fault Zone (ECO2M/r1d)
      • Problem 6-Migration of a CO2 Plume in a Sloping Aquifer, Intersected by a Fault (ECO2M/rwaf)
      • Problem 7-GCS/GHE with a double-porosity reservoir (Case6_50kg_DP/ECO2NV2)
    • EWASG
      • Problem 1 - Brine Density Calculation (dnh)
      • Problem 2 - Production from a Geothermal Reservoir with Hypersaline Brine and CO2 (rhbc)
    • TMVOC
      • Problem 1-Initialization of Different Phase Conditions (r7c)
      • Problem 2-1-D Buckley-Leverett Flow (rblm)
      • Problem 3-Diffusion of components (rdif2)
      • Problem 4-Steam Displacement of a NAPL in a Laboratory Column (rtcem)
      • Problem 5-Steam Displacement of a Benzene-Toluene Mixture in a Laboratory Column (rbt)
      • Problem 6 -Air Displacement of a NAPL from a Laboratory Column (rad)
      • Problem 7-NAPL Spill in the Unsaturated Zone (r2dl)
    • T4.Well
      • Problem 1-Steady-state two-phase flow upward
      • Problem 2-Non-isothermal CO2 flow through a wellbore initially full of water
  • CONCLUSION REMARKS
  • REFERENCES
  • ACKNOWLEDGEMENT
  • Appendix
    • ☑️A: RELATIVE PERMEABILITY FUNCTIONS
      • IRP=1 Linear function
      • IRP=2 Power function
      • IRP=3 Corey's curves
      • IRP=4 Grant's curve
      • IRP=5 Perfectly mobile
      • IRP=6 Fatt and Klikoff function
      • IRP=7 van Genuchten-Mualem Model
      • IRP=8 Verma function
      • IRP=10 Modified Brooks-Corey Model
      • IRP=11 Modified van Genuchten Model
      • IRP=12 Regular hysteresis
      • IRP=13 Simple hysteresis
      • IRP=31 Three phase perfectly mobile
      • IRP=32 Modified Stone's first 3-phase method
      • IRP=33 Three-phase Parker's function
      • IRP=34 Alternative Stone 3-phase
      • IRP=35 Power-law function
      • IRP=36 Faust for two-phase Buckley-Leverett problem
      • IRP=37 Another alternative to Stone function
      • IRP=40 Table lookup
      • IRP=41 User-Defined relative permeability function
    • ☑️B: CAPILLARY PRESSURE FUNCTIONS
      • ICP=1 Linear function
      • ICP=2 Function of Pickens
      • ICP=3 TRUST capillary pressure
      • ICP=4 Milly’s function
      • ICP=6 Leverett’s function
      • ICP=7 van Genuchten function
      • ICP=8 No capillary pressure
      • ICP=10 Modified Brooks-Corey Model
      • ICP=11 Modified van Genuchten Model
      • ICP=12 Regular hysteresis
      • ICP=13 Simple hysteresis
      • ICP=31 Parker et al 3-phase function
      • ICP=32 Parker 3-phase function, alternative 1
      • ICP=33 Parker 3-phase function, alternative 2
      • ICP=34 Parker 3-phase function, alternative 3
      • ICP=40 Table lookup
      • ICP=41 User-Defined capillary pressure function
    • ☑️C: ADDITIONAL PROGRAM OPTIONS
    • ☑️D: DESCRIPTION OF FRACTURED FLOW
      • Multiple Continuum Approaches
      • Active Fracture Modle
Powered by GitBook
On this page
  1. PREPARATION OF MODEL INPUT
  2. Keywords and Input Data

FNIST

PreviousFLACNextFOFT

Last updated 2 days ago

Running a simulation with EOS6 requires thermophysical properties (density, viscosity, enthalpy, ...... ) of the gas component which are stored in a file named "gas_properties.dat". User may create this file manually through downloading the thermophysical property data for a requested gas (see for details). If a simulation is run with an executable which includes Python interface, TOUGH4 can automatically fetch these data from and create the file "gas_properties.dat". FNIST is used to specify the parameters required for fetching data from the NIST web site.

FNIST was originally designed for EOS6 simulation. User may also use it to get fluid property data for model validation of other EOS modules.

FNIST Introduces parameters for fetching thermophysical property data of a specific gas from NIST Chemistry WebBook. The property data are fetched for given pressure and temperature conditions in user specified pressure and temperature range.

Record FNIST.1

Free format for 7 parameters, or FORMAT (I5, 6E10.4)

GasIndex, P_Begin, P_end, dP, T_Begin, T_ene, dT

GasIndex Index of the gas. User may find it from the list at the bottom of this page.

P_Begin Beginning of the pressure range , in MPa.

P_end ending of the pressure range, P_end must be large than P_Begin, in MPa.

dP The pressure increment, in MPa.

T_Begin Beginning of the temperature range , in oC.

T_end ending of the temperature range, T_end must be large than T_Begin, in oC.

dT The temperature increment, in oC.

Fetching data from NIST website could be slow. User may only request the pressure and temperature range that can fully cover the pressure and temperature of current simulation. The pressure and temperature increment must be reasonable. It is suggested to limit the dimension of table less than 1000, (P_end-P_begin)/dP<1000 and (T_end-T_begin)/dT<1000.

The data fetching will be performed at first run only. If "gas_properties.dat" is already exist in the working directory, the fetching process will be skipped.

To use this functionality, a TOUGH4 executable with Python interface must be run. Two Python files (fetchWebBookData.py and TOUGH_python_module.py) in the TOUGH4 distribution package must be copied to the location where the TOUGH4 executable is located.

Followings are the index of gases/fluids that are included in :

1, Water 2, Nitrogen 3, Hydrogen 4, Parahydrogen 5, Orthohydrogen 6, Deuterium 7, Oxygen 8, Fluorine 9, Carbon monoxide 10, Carbon dioxide 11, Dinitrogen monoxide 12, Deuterium oxide 13, Methanol 14, Methane 15, Ethane 16, Ethene 17, Propane 18, Propene 19, Propyne 20, Cyclopropane 21, Butane 22, Isobutane 23, Pentane 24, 2-Methylbutane 25, 2,2-Dimethylpropane 26, Hexane 27, 2-Methylpentane 28, Cyclohexane 29, Heptane 30, Octane 31, Nonane 32, Decane 33, Dodecane 34, Helium 35, Neon 36, Argon 37, Krypton 38, Xenon 39, Ammonia 40, Nitrogen trifluoride 41, Trichlorofluoromethane 42, Dichlorodifluoromethane (R12) 43, Chlorotrifluoromethane (R13) 44, Tetrafluoromethane (R14) 45, Dichlorofluoromethane (R21) 46, Methane, chlorodifluoro- (R22) 47, Trifluoromethane (R23) 48, Methane, difluoro- (R32) 49, Fluoromethane (R41) 50, 1,1,2-Trichloro-1,2,2-trifluoroethane (R113) 51, 1,2-Dichloro-1,1,2,2-tetrafluoroethane (R114) 52, Chloropentafluoroethane (R115) 53, Hexafluoroethane (R116) 54, Ethane, 2,2-dichloro-1,1,1-trifluoro- (R123) 55, Ethane, 1-chloro-1,2,2,2-tetrafluoro- (R124) 56, Ethane, pentafluoro- (R125) 57, Ethane, 1,1,1,2-tetrafluoro- (R134a) 58, 1,1-Dichloro-1-fluoroethane (R141b) 59, 1-Chloro-1,1-difluoroethane (R142b) 60, Ethane, 1,1,1-trifluoro- (R143a) 61, Ethane, 1,1-difluoro- (R152a) 62, Octafluoropropane (R218) 63, 1,1,1,2,3,3,3-Heptafluoropropane (R227ea) 64, 1,1,1,2,3,3-Hexafluoropropane (R236ea) 65, 1,1,1,3,3,3-Hexafluoropropane (R236fa) 66, 1,1,2,2,3-Pentafluoropropane (R245ca) 67, 1,1,1,3,3-Pentafluoropropane (R245fa) 68, Octafluorocyclobutane (RC318) 69, Benzene 70, Toluene 71, Decafluorobutane 72, Dodecafluoropentane 73, Sulfur dioxide 74, Hydrogen sulfide 75, Sulfur hexafluoride 76, Carbonyl sulfide

Used in: EOS6 module, can also be used for model validation for all other EOS modules.

Example:

FNIST

36, 0.1, 80., 0.5, 30., 50., 5.0

//obtained Argon thermophysical property data for pressure range 0.1-80Mpa, temperature range 30-50 oC with increment 0.5Mpa and 5.0 oC, respectively.

8️⃣
Section 7-EOS6-subsection 3
NIST Chemistry WebBook
NIST Chemistry WebBook