TOUGH4 User Manual
  • Quick Entry to Keywords for Data Input
  • 1️⃣INTRODUCTION
    • About TOUGH
    • TOUGH Development History
    • TOUGH4 Implementation
    • Scope and Methodology
  • 2️⃣WHAT IS NEW IN TOUGH4
  • 3️⃣CODE COMPILATION AND INSTALLATION
    • Setup for Compilation
    • Code Compilation
      • 1. Compilation of TOUGH4 using Visual Studio
      • 2. Compilation of TOUGH4 on Linux-like platform
    • Installation
    • Running the Executable for Simulations
  • 4️⃣GOVERNING EQUATIONS
    • Mass-Balance Equation
    • Accumulation Terms
    • Flux Terms
    • Sink and Source Terms
    • Virtual Node Well Treatment
    • Semi-Analytical Conductive Heat Exchange
    • Drift Model
    • Non-Darcy Flow
  • 5️⃣NUMERICAL METHOD
    • Space and Time Discretization
    • Interface Weighting Schemes
    • Initial and Boundary Conditions
      • Initial Conditions and Restarting
      • Neumann Boundary Conditions
      • Dirichlet Boundary Conditions
      • Atmospheric Boundary Conditions
      • Constant Temperature Boundary Conditions
    • Parallel computing schemes
    • Linear Solvers
    • Python Functions
      • Relative Permeability
      • Capillary Pressure
      • Initial Condition Calculation
      • Fetching Output Data
      • Fetching Thermophysical Property Data From NIST Webbook
      • Coupling With Third-Party Software
  • 6️⃣SOFTWARE ARCHITECTURE
    • Program Design
    • Data Structure
    • Linear Equation Setup
  • 7️⃣PROCESS MODELING
    • EOS1
    • EOS2
    • EOS3
    • EOS4
    • EOS6
    • EOS7
    • EOS9
    • ECO2
    • EWASG
    • TMVOC
    • Tracers/Decay Chain
    • Biodegradation Reaction
    • Wellbore Flow
    • Non-Darcy Flow
    • Enhanced Coal Bed Methane
  • 8️⃣PREPARATION OF MODEL INPUT
    • Input Formatting
    • Keywords and Input Data
      • TITLE
      • BIODG
      • CBMDA
      • CHEMP
      • COFT
      • CONNE
      • COUPL
      • DIFFU
      • ELEME
      • ENDCY
      • ENDFI
      • FLAC
      • FNIST
      • FOFT
      • FORCH
      • GASES
      • GENER
      • GOFT
      • HYSTE
      • INCON
      • INDOM
      • MESHM
      • MODDE
      • MOMOP
      • MULTI
      • OUTPU
      • PARAM
      • ROCKS
      • ROFT
      • RPCAP
      • SELEC
      • SOLVR
      • SPAVA
      • TIMBC
      • TIMES
      • TRACR
      • WELLB
    • Inputs for Initial Conditions
      • EOS1
      • EOS2
      • EOS3
      • EOS4
      • EOS6
      • EOS7
      • EOS9
      • ECO2
      • EWASG
      • TMVOC
    • Geometry Data
      • General Concepts
      • MESHMaker
      • Multiple-continuum processing
    • Inputs for MESHMaker
      • Generation of radially symmetric grids
        • RADII
        • EQUID
        • LOGAR
        • LAYER
      • Generation of rectilinear grids
      • MINC processing for fractured media
    • Adjustment of Computing Parameters at Run-time
  • 9️⃣OUTPUTS
  • 🔟VALIDATION AND APPLICATION EXAMPLES
    • EOS1
      • Problem 1 - Code Demonstration
      • Problem 2 - Heat Sweep in a Vertical Fracture (rvf)
      • Problem 3 - Five-spot Geothermal Production/Injection (rfp)
      • Problem 4 - Coupled Wellbore Flow (r1q)
      • Problem 5 - Five-Spot Geothermal Production/Injection under extremely high temperature
    • EOS2
      • Problem 1 -Five-spot Geothermal Production/Injection (rfp)
    • EOS3
      • Problem 1 - Code Demonstration (eos3p1)
      • Problem 2 - 1D TH Problem with Heating and Gas Source (by Guanlong Guo)
      • Problem 3 - Heat Pipe in Cylindrical Geometry (rhp)
      • Problem 4 - 3D Thermal Consolidation Test, Coupling with FLAC3D Simulator (by Guanlong Guo)
    • EOS4
      • Problem 1 - Code Demonstration (eos4p1)
      • Problem 2 - Heat Pipe in Cylindrical Geometry (rhp)
    • EOS6
      • Problem 1-Validation with EOS2
      • Problem 2-Noble Gas Transport
    • EOS7
      • Problem 1-Multiphase and Nonisothermal Processes in a System with Variable Salinity (rf1)
      • Problem 2-Thermal and Tracer Diffusion (EOS7R/rdif7)
      • Problem 3-Contamination of an Aquifer from VOC Vapors in the Vadose Zone (EOS7R/rdica)
      • Problem 4-Density, Viscosity, Solubility, and Enthalpy of Real Gas Mixtures (EOS7C/SAM7C1)
      • Problem 5-CO2 Injection into a Depleted Gas Reservoir (EOS7C2/SAM7C2)
      • Problem 6- CO2 Injection into a Saturated System (EOS7C/SAM7C3)
      • Problem 7-Density, Viscosity, and Enthalpy of Real Gas Mixtures (EOS7CA/SAM7CA1)
      • Problem 8-CO2 Injection into a Shallow Vadose Zone (EOS7CA/SAM7CA2)
      • Problem 9-Non-Isothermal Compressed Air Energy Storage in Reservoir (by Julien Mouli-Castillo)
    • EOS9
      • Page 1
    • ECO2
      • Problem 1-Demonstration of Initialization Options (ECO2N/rtab)
      • Problem 2-Radial Flow from a CO2 Injection Well (ECO2N/rcc3)
      • Problem 3-CO2 Discharge Along a Fault Zone (ECO2N/r1dv)
      • Problem 4-CO2 Injection into a 2-D Layered Brine Formation (ECO2N/rtp7)
      • Problem 5-Upflow of CO2 along a Deep Fault Zone (ECO2M/r1d)
      • Problem 6-Migration of a CO2 Plume in a Sloping Aquifer, Intersected by a Fault (ECO2M/rwaf)
      • Problem 7-GCS/GHE with a double-porosity reservoir (Case6_50kg_DP/ECO2NV2)
    • EWASG
      • Problem 1 - Brine Density Calculation (dnh)
      • Problem 2 - Production from a Geothermal Reservoir with Hypersaline Brine and CO2 (rhbc)
    • TMVOC
      • Problem 1-Initialization of Different Phase Conditions (r7c)
      • Problem 2-1-D Buckley-Leverett Flow (rblm)
      • Problem 3-Diffusion of components (rdif2)
      • Problem 4-Steam Displacement of a NAPL in a Laboratory Column (rtcem)
      • Problem 5-Steam Displacement of a Benzene-Toluene Mixture in a Laboratory Column (rbt)
      • Problem 6 -Air Displacement of a NAPL from a Laboratory Column (rad)
      • Problem 7-NAPL Spill in the Unsaturated Zone (r2dl)
    • T4.Well
      • Problem 1-Steady-state two-phase flow upward
      • Problem 2-Non-isothermal CO2 flow through a wellbore initially full of water
  • CONCLUSION REMARKS
  • REFERENCES
  • ACKNOWLEDGEMENT
  • Appendix
    • ☑️A: RELATIVE PERMEABILITY FUNCTIONS
      • IRP=1 Linear function
      • IRP=2 Power function
      • IRP=3 Corey's curves
      • IRP=4 Grant's curve
      • IRP=5 Perfectly mobile
      • IRP=6 Fatt and Klikoff function
      • IRP=7 van Genuchten-Mualem Model
      • IRP=8 Verma function
      • IRP=10 Modified Brooks-Corey Model
      • IRP=11 Modified van Genuchten Model
      • IRP=12 Regular hysteresis
      • IRP=13 Simple hysteresis
      • IRP=31 Three phase perfectly mobile
      • IRP=32 Modified Stone's first 3-phase method
      • IRP=33 Three-phase Parker's function
      • IRP=34 Alternative Stone 3-phase
      • IRP=35 Power-law function
      • IRP=36 Faust for two-phase Buckley-Leverett problem
      • IRP=37 Another alternative to Stone function
      • IRP=40 Table lookup
      • IRP=41 User-Defined relative permeability function
    • ☑️B: CAPILLARY PRESSURE FUNCTIONS
      • ICP=1 Linear function
      • ICP=2 Function of Pickens
      • ICP=3 TRUST capillary pressure
      • ICP=4 Milly’s function
      • ICP=6 Leverett’s function
      • ICP=7 van Genuchten function
      • ICP=8 No capillary pressure
      • ICP=10 Modified Brooks-Corey Model
      • ICP=11 Modified van Genuchten Model
      • ICP=12 Regular hysteresis
      • ICP=13 Simple hysteresis
      • ICP=31 Parker et al 3-phase function
      • ICP=32 Parker 3-phase function, alternative 1
      • ICP=33 Parker 3-phase function, alternative 2
      • ICP=34 Parker 3-phase function, alternative 3
      • ICP=40 Table lookup
      • ICP=41 User-Defined capillary pressure function
    • ☑️C: ADDITIONAL PROGRAM OPTIONS
    • ☑️D: DESCRIPTION OF FRACTURED FLOW
      • Multiple Continuum Approaches
      • Active Fracture Modle
Powered by GitBook
On this page
  1. SOFTWARE ARCHITECTURE

Data Structure

PreviousProgram DesignNextLinear Equation Setup

In TOUGH4, many procedures and functions with data encapsulation are designed as modules. There are three most popular types of modules: property module, process modeling module, and function module. The property modules are designed to hold the property data of objects and their related functions and procedures. The most important property modules include modules for water properties, CO2 properties, brine properties, supercritical water properties, real gas properties, and geological media properties. Process modeling modules define the specific physical processes and perform related calculations. Main processing modeling modules include the EOS modules, wellbore simulation module, and biodegradation reaction module. The function modules perform calculations for specific tasks, such as the modules for domain decomposition, MPI parallel computing, and mesh maker.

Modules are also used to group data with common purpose together. User defined structures or derived data types are widely used to store a group of related data. For example, all the rock related parameters are grouped into a data type PFMedium, all source/sink related parameters are grouped into a data type SourceSink, all secondary parameters are grouped into a data type Second_Variable, and many other data. Figure 12 shows the definition of Second_Variable.

Adoption of Second_Variable data type makes the codes get rid of the complex array indexing for PAR used in previous version. The use of derived data type helps the management of program data and improves readability of the source codes.

In TOUGH4, the matrix and right-hand-side vector of the linear equation system formed in the Newton-Raphson iteration are stored in a standard distributed CSR (Compressed Sparse Row) format. CSR originated in high-performance scientific computing as a way to represent sparse matrices, whose rows contain mostly zeros. The basic idea is to pack the column indices of non-zero entries into a dense array. CSR is more compact and is laid out more contiguously in memory than adjacency lists and adjacency vectors, eliminating nearly all space overheads and reducing random memory accesses compared with these other formats. Distributed CSR is the matrix and vector of CSR format distributed among multiple CPUs, which is widely used for solving linear equations with MPI parallel computing. By using this standard format, it is easy to interface TOUGH with the public domain third-party linear solver libraries. In addition, TOUGH4 provides a function for converting the CSR to BSR (Block Compressed Sparse Row) format to achieve additional efficiency for some solvers.

6️⃣
Figure 12. An example of derived data type-the derived data type for secondary variables